
CHAPTER

SEVEN

EXCHANGE FUNCTIONS

Exchange Functions is a speci�cation mechanism for designing and a model for

describing distributed and embedded systems.* Exchange Functions assumes ex-

plicit processes that communicate by calling functions that exchange values.

Communication with exchange functions is bidirectional, simultaneous, and sym-

metric. That is, in an exchange (communication), information transfers between

both communicators simultaneously; each communicator has an equal role in

establishing the communication. The model has mechanisms for both blocking

and nonblocking communication. Exchange functions are a particularly elegant

integration of communication and communication failure. Pamela Zave and D.

R. Fitzwater developed the Exchange Functions model [Fitzwater 77].

Varieties of Exchange Functions

Exchange Functions is based on synchronous, simultaneous, and bidirectional

communication on a static, predetermined set of processes. Each process is a state

automaton, described by a current state and a function for reaching its next state.

With Turing machines, state progression is determined by the machine's internal

state (tape), state-transition function, and input. Similarly, state transition in

Exchange Functions is de�ned by the process's state, state transition function

(its successor function), and the value received in a communication exchange. For

* An embedded system is a computer system that is incorporated in a larger device. For

example, a computer used to monitor and control a manufacturing process is an embedded

system.
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example, the even process (which does no communication) has as its successor

function:

successor(even) � even + 2

If this process's initial state is 0, it successively takes as its states the even

numbers: 0, 2, 4, : : : .

Successor functions are built up by functional composition from other, more

primitive functions. Besides the usual kinds of primitives (such as arithmetic,

conditional, constructor, and selector primitives), Exchange Functions introduces

a new set of communication primitives|the exchange functions. Two processes

that call corresponding exchange functions communicate. Each exchange func-

tion takes a single argument (the value to be sent to another process) and returns

a single value (the value received from the other process). Exchange functions

thus unify input and output.

Each exchange function refers to a particular channel. Two exchange func-

tions can communicate only if their channels match. Calls to exchange functions

on di�erent channels do not result in communication. We let E� indicate a call

of exchange function E on channel �. If process P executes an E�(1) and process

Q executes an E� (2), no exchange occurs (as � and � are di�erent channels).

If Process R then executes an E�(3), then a 3 is returned as the value of Q's

call, and a 2 as the value of R's call. P remains blocked, waiting for a call on

channel �.

The model de�nes three varieties of exchange functions, distinguished by

their matching and temporal characteristics. The simplest is X. Evaluating X

(on some channel) causes the process to block until another process evaluates

any other exchange function on the same channel. When this happens the two

processes exchange arguments and return. Thus, X is a waiting, synchronous

primitive.

Calling X blocks a process until another process executes a matching ex-

change function. Sometimes a process needs to check whether another process

is trying to communicate, but wants to avoid blocking if no communication is

available. Primitive function XR serves this purpose. If a process executes an XR

and some other process is currently waiting on the same channel, they exchange

and return. If no process is waiting on that channel, the argument of the XR is

returned. A process issuing an XR distinguishes between successful and unsuc-

cessful communication attempts by calling XR with an argument that could not

be the result of a successful exchange. That is, if P executes XR�(4), and no

communication is waiting on channel �, then the value of XR�(4) is 4. The R in

XR stands for real time. Zave and Fitzwater assert that this exchange behavior

is essential for real-time systems.

Metaphorically, we compare the XR primitive to a \ashing" liquid crystal

display (LCD) clock. Each second, the clock o�ers the time. A person looking at

the clock (waiting for the time) sees the time when the clock ashes. The clock
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ash is instantaneous. The clock never waits for the time seeker; the time seeker

always waits for the clock. This parallels real-time sensing, where the sensor

misses events if it is not watching for them.

Any X� can communicate with any other X�. This uniform matching makes

it awkward to program some algorithms that use a many-to-one communication

pattern. For example, many processes may share a single bu�er. They need

to communicate with the bu�er, not each other. The XM exchange function

provides the needed \directionality" to communication. Briey, calls to XM do

not exchange with other calls to XM. XM calls can still exchange with Xs and

XRs on the same channel. The M in XM stands for many-to-one.

One example of the use of XM is Zave's description of a real-time clock

[Zave 82]. The clock is a process that executes XRclock(current time) each \tick."

This o�ers the clock's time to any process that desires it. To get the time, proc-

esses execute XMclock(time please) (where time please is any arbitrary value.)

This call waits for a matching XRclock. If instead of XM, time-desiring processes

execute Xclock(time please), then two processes requesting the time could com-

municate with each other (sending each other a time please), instead of receiving

the time from the clock. If the clock updates the value of current time between

calls to XRclock, then no two processes ever receive the same time.

The check marks in Table 7-1 show the possible communication matches be-

tween the three exchange primitives. The variety of exchange function primitives

(X, XR, and XM) selects all useful possibilities in a two-by-two grid. An exchange

function can exchange with itself, like X (self-exchange) or exchange only with

other functions, like XR and XM. An exchange function can be blocking (waiting)

like X and XM or it can be instantaneous (nonwaiting), like XR. An instantaneous

primitive is available only for an instant. Therefore, an instantaneous primitive

never exchanges with another instantaneous primitive. Table 7-2 illustrates this

relationship.

Zave and Fitzwater assert that the channel of any particular call to an ex-

change function must be a compile-time constant [Zave 77]. This has two rami-

�cations. The �rst is that one cannot subscript channel names in an Exchange

Functions program. The second is that channels cannot be dynamically created

Table 7-1 Potential exchanges

X XR XM

X

p p p

XR

p p

XM

p p
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Table 7-2 Exchange function dimensions

Waiting Instantaneous

Self-exchange X Impossible

No self-exchange XM XR

and transferred between processes. In practice, this restriction is just a syntactic

impediment|one can achieve subscripting on channel names (over a known set

of channels) by a su�ciently complicated program structure. We believe that it

is a mistake not to include subscripted channels in the model. So we ignore this

restriction in our examples.

Implementing Exchange Functions in a distributed network requires conict

resolution|the matching of interacting pairs. Zave and Fitzwater specify that

this conict resolution be weakly fair|that is, no pending exchange (from an X

or XM) should be inde�nitely denied [Zave 77].

Zave suggests that when more than two processes communicate on the same

channel, the communication pattern is almost always many-to-one (though the

particular application determines which of the pairs XM/XR or XM/X is appro-

priate [Zave 83]). Later in this section we present a fanciful counterexample to

this hypothesis, a program with a completely unfocused communication pattern.

Sometimes one has a choice of several possible exchange patterns for a par-

ticular application. For example, an X{X communication between two processes

can just as easily be performed with an X{XM pair; the e�ect of an X can some-

times be achieved by performing an XR in a loop. (However, one does not achieve

an X{X communication pattern using two looping XRs!)

The communication mechanisms of Exchange Functions parallel, to some

extent, the communication facilities provided by shared-loop bus systems such

as the Ethernet [Metcalfe 76]. The shared buses of Ethernet correspond to the

channels of Exchange Functions.

Successor Functions

In Exchange Functions, processes have state. The state of a process changes,

stepwise, through the life of the process. Each process has a successor function

that describes this change. This function, given the state of a process, returns

the new state of the process. The evaluation of this function may block, pending

completion of its communications. Notationally, we indicate the successor func-

tion for a process by applying the successor function to the name of that process.
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The process identi�er names the state of the process. For example, if F is the

successor function of process P, we write

successor(P) � F(P)

Viewing the process identi�er as a variable, this sequence of states is analogous

to the program

while true do P := F(P)

Following Zave [Zave 82], we use functional notation to describe successor func-

tions.*

Binary semaphore A binary semaphore is a process with communication ca-

pabilities on two channels, Psem and Vsem. When the semaphore is free, it

executes XPsem. When the call on Psem returns, the semaphore calls XVsem. The

semaphore alternates calls to XPsem and XVsem. The state of the semaphore is

expressed entirely by the channel on which it is waiting. A simple program for a

binary semaphore is

successor (semaphore) � XVsem(XPsem(�))

Shared Variables The Lynch-Fischer model (Chapter 6) is based on shared

variables. In that model, the only communication mechanism between processes

is the reading and writing of shared variables. The processes of the general Lynch-

Fischer model are powerful automata. In a single atomic step they can read a

shared variable, compute a new value for that variable, and write that value back

into the variable.

We model shared variable communication in Exchange Functions by creating

a register process. For each register we have two channels, read, to be used in

reading the register value, and write, to be used in writing it. Like the semaphore,

the register forces an order on these operations: the alternations of reads and

writes. Unlike the semaphore, the register retains its state between reads and

writes. The program for the register is

successor(register) � Xwrite (Xread (register))

* Briey, the notation F(G (H (x), y)) is equivalent to the sequential program

function FGH (x);

begin

tempH := H(x);

tempG := G(tempH, y);

answer := F(tempG);

return (answer)

end
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Operationally, the register responds to a call on Xread by sending the current

value of the register. The value returned (a synchronization signal like �) is used

as the argument to Xwrite; the value returned by the call on write becomes the

new value of the register. Thus, the call on read sends the register's value and

receives a synchronization signal; the call on write sends a synchronization signal

and receives the register's new value.

Processes that access the register include the sequence

: : : XMwrite (F (XMread (�))) : : :

as part of their successor function. To be true to the pure Lynch-Fischer model,

function F should not read or write any other shared variables.

Unbounded bu�er Our unbounded producer-consumer bu�er executes the fol-

lowing algorithm: At each step the bu�er calls XR on the producer channel and

XR on the consumer channel. The bu�er changes its state if either call is matched.

If neither channel has a waiting call, the bu�er retains the same state. Let

Bu�er The ordered list that represents the state of the bu�er process.

nil The null (empty) bu�er.

Ack-from-C The acknowledgment from the consumer.

Ack-to-P The acknowledgment to the producer.

We represent the state of a bu�er as a list L of elements L1, L2, : : : , Lk
(where k is the length of L). We then de�ne the following functions (with their

Lisp equivalents, of course, in parentheses):

�rst (L) � L1 - - (car L)

rest (L) � L2 : : : Lk - - (cdr L)

�rst-insert (e, L) � if (e = Ack-from-C) then L

else e L1 L2 : : : Lk - - (cons e L)

last-insert (L, e) � if (e = Ack-to-P) then L

else L1 L2 : : : Lk e - - (append L (list e))

The successor function of the bu�er is

successor (Bu�er) �

if Bu�er = nil then last-insert (Bu�er, Xp(Ack-to-P)) - - (*)

else last-insert (�rst-insert (XRc (�rst (Bu�er)),

rest (Bu�er)),
XRp(Ack-to-P))

This bu�er provides two communication channels: XRc for communication

with consumers and XRp for communication with producers. An empty bu�er is
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receptive only to messages from producers. The then clause of the conditional

handles this possibility (*). Steps of the bu�er process �t into one of four di�erent

patterns: no messages sent to the bu�er, messages only from producers, messages

only from consumers, and messages from both producers and consumers. If no

messages are sent on either channel, then the XRc is �rst (Bu�er) and the value

of XRp is Ack-to-P. The computation proceeds as

successor(Bu�er)

) last-insert (�rst-insert (�rst(Bu�er), rest (Bu�er)), Ack-to-P)

) �rst-insert (�rst (Bu�er), rest (Bu�er))

- - as last-insert (B, Ack-to-P) = B

) Bu�er

If a process tries to consume, XMc(Ack-from-C) and XRc(�rst (Bu�er)) exchange.

Ack-from-C is ignored by �rst-insert (when Bu�er is nil) and the bu�er shrinks.

If a process tries to produce, XMp(value) exchanges with an XRp(Ack-to-P), this

last-insert (Bu�er, value) successfully adds a new element at the end of the bu�er.

These two exchanges can occur on the same successor step; the bu�er shrinks at

the front and extends at the rear. No matter how many consumers or producers

wish to communicate, the bu�er accommodates at most one of each on each full

step of the successor function.

Process control Our �nal example of Exchange Functions is a process control

program. We imagine that during some manufacturing process it is necessary to

maintain a certain temperature distribution in a vat of liquid over a long period

of time. The vat contains several controllers, several sensors (thermometers),

and several heating elements at �xed locations. Each controller communicates

directly, over its own specialized channels, with its own thermometer and its

own heater. The controllers communicate with each other over a single, common

channel.

Each controller's position is indicated by its hi; ji coordinates (Figure 7-1).

The controller's state is a �nite bu�er in which it maintains the last few readings

it has received. A reading is an ordered pair of the form hposition, temperaturei.

By the analysis of these values, the controller decides which instructions to send

to its heater. The controller's program is a �ve-state loop. (1) It gets a reading

from its own thermometer. (2) It o�ers its hposition, readingi pair on the common

controller channel, world. (3) When it receives a hposition, readingi pair from

some other controller, it adds it to its �nite bu�er. (4) It analyzes the updated

data and decides what instructions to send to its heater. (5) Finally, it deletes

its oldest datum, leaving room for a new reading on the next step.

The heating element repeatedly receives instructions and adjusts its control

to follow those instructions. Each sensor (like the real-time clock) continuously

o�ers the temperature to its controller. We use function proj-2, that evaluates

both of its arguments and returns the second. This example uses exchange func-

tion X in a many-to-many organization.
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Figure 7-1 The process control bath.

successor (controller[i,j]) �

process[i,j] (last-insert (controller,

Xworld(hhi, ji, Xsensor[i,j] (ack)i))).

process[i,j] (controller) �

proj-2 (hXheater[i,j] (decide-what-to-send-to-heater (controller)),

rest (controller)i).

successor (sensor[i,j]) �

XRsensor[i,j] (current-temperature-register[i,j]).

successor (heater[i,j]) �

adjust-control[i,j] (Xheater[i,j](ack)).

Guarded Exchange Functions

These next two sections describe some possible extensions to the Exchange Func-

tions model.

Many systems use a variant of Dijkstra's guarded commands (Section 2-2)

to combine indeterminacy and communication selection. The original exchange

functions de�nition has no mechanism for requesting an exchange on one of

several channels. Let us consider the e�ect of extending exchange functions to

include a primitive with the power of guarded commands.

In 1963, John McCarthy introduced the operator amb for e�ecting nonde-

terminism [McCarthy 63]. McCarthy's amb is a binary operator. Its value is

whichever of its two operands is de�ned. If both are de�ned, then amb can re-

turn either one; if neither is de�ned, then amb is also unde�ned. Operationally,
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amb (f, g) can be thought of as \start both f and g, returning whichever �nishes

`�rst.' " Of course, unde�ned operands never �nish. Since these systems are for-

mally time-free, a complex computation may �nish before a simple one. For this

section, we restrict the operands of amb to be calls to exchange functions. For

any two exchange calls, E� and E�, we let amb (E�, E�) be whichever of the

two exchanges matches �rst. If there are waiting exchanges on both channels,

then we let amb choose indeterminately which one to match. We allow amb to

range over any variety of exchange function. Additionally, we extend amb to take

an arbitrary number of arguments. Thus, a typical subexpression of a successor

function using our amb is:

amb (E�(1), E� (2), E (3), E� (4))

The evaluation of this expression sends communication o�ers out along channels

�, �, , and �. When one is accepted, the other three o�ers are rescinded and

values are exchanged on the successful channel.

One peculiarity of this naive introduction of amb is that unlike guarded

commands, the calling function cannot �nd out which amb branch was selected.

All that is returned is the resulting value. This di�culty can be overcome by

having each sending process decorate its message with the identity of its com-

munication channel. A second artifact is that since XR exchanges always return

immediately, an XR in an amb may dominate the other arguments. This implies

that XRs inside ambs are of limited utility.

Delaying Exchange

Calling an exchange function produces communication exactly when the function

returns. Let us assume that process A wishes to exchange on channel �. If no

process is waiting to exchange on �, A either waits for a match (if it executed X

or XM) or immediately returns, reporting failure (if it did an XR).

One could imagine other possible timing arrangements for exchanges. A proc-

ess might expect to have a use for an exchange value, but have another useful

computation to do in the meantime. Doing this other computation might reveal

that the information requested in the original exchange was not really needed

after all. We consider the possibility of allowing the process to initiate an ex-

change and continue with its computation, pausing only when the value is really

needed. This variation is inspired by the theme of call-by-need : delaying param-

eter evaluation until use. This pattern can also be viewed as treating message

communication as a fork operation, where using the returned value is the occasion

to do the join. We call this mode of communication join-by-need.

Starting an exchange and completing it later has di�erent meanings for the

waiting (X, XM) and instantaneous (XR) functions. For the waiting exchange

primitives, the desired implementation is a simple fork and join. When the in-

terpreter sees a call to an X or XM exchange function, it initiates the exchange.
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The process is free to continue its processing. Only when the value returned by

the exchange function is used in the computation is there a potential for delay.

If the exchange has not been completed by that time, the process waits for the

value.

Sometimes the value of the exchange function is never used. For example, ac-

knowledgments (such as the acknowledgment in the bu�er insertion example) are

frequently not examined. Here the forking acts like a send-and-forget message-

passing system. Even if the value is not examined, the exchange is still deemed

to have taken place.

The semantics of programs incorporating this fork-and-join primitive di�er

from those of the original waiting system. Most signi�cantly, exchange no longer

e�ects synchronization. For example, an unchecked semaphore no longer syn-

chronizes. To restore the synchronization aspect of the exchange, we would need

an \exchange and immediately access primitive."

The instantaneous exchange function (XR) presents an opportunity to intro-

duce a new primitive. In the original call-by-value semantics, the XR exchange

function implied an \instantaneous" exchange. If one considers the intent of XR

as an exchange without waiting, the delayed evaluation metaphor can provide

a di�erent meaning. A call to XR signi�es an exchange o�er that can later be

withdrawn. If the o�er is not accepted before the answer is needed, then the

usual failure response (return of the original argument) is given. The notion of

a time-out is a traditional one in operating systems theory. Our new primitive

allows a \compute out." If further computation reveals that the value would not

be useful unless it were immediately present, then the exchange is aborted.

The following analogy may prove helpful. Imagine (process) Joe in his o�ce.

He is researching some problem (computing) and decides he needs to go to the

library (obtain some resource). Joe can take a cab or a bus to the library (Joe has

the choice of two di�erent ways of obtaining the resource). Cabs are preferable,

but the taxi company is unreliable and sometimes does not respond to requests.

Joe decides that he might want to take a cab to the library later, so he sends out

an XRcab(request for cab) and continues his research (computes). At some point

he may decide that he really does not need to go to the library (the computation

never needs the value in the library). He can then just forget to see if any cab

ever responded to his request. The cab may or may not eventually appear.* Or

Joe could �nd himself stuck, with no choice but to go to the library. If no cab

appears (the XR responded with his original argument), he can give up and take

the bus.

The delayed exchange system can be integrated with the amb operator of

the previous section. Joe could then call a cab, call a bus, and compute. When

his computation became limited by the need to visit the library, he could then

wait for either the cab or the bus to arrive.

* This attitude on the part of their customers may explain why the cabs are so unreliable.
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As powerful as this extension may seem, it has some limitations. For exam-

ple, a process cannot discover if an exchange has been completed without either

forcing the exchange to complete or abort. This parallels the inability of a func-

tion in a delayed-evaluation system (Chapter 12) to �nd out if a value has been

obtained for a delayed evaluation.

Since the XR operator possesses duration in this scheme, we can imagine

another exchange function that would �t into the previously barred portion of

Table 7-2. This function would be both instantaneous (nonblocking) and able to

converse with itself.

Perspective

Exchange Functions provides bidirectional, synchronous communication. The

model includes mechanisms for blocking communication, unblocked communi-

cation, and broadcast o�ers of communication. Exchange Functions also extends

neatly to other capabilities, such as guarded commands and call-by-need. Syn-

tactically, Exchange Functions has a particularly simple and elegant form: a

minimal amount of structure provides a general and exible facility.

This is not to imply that Exchange Functions handles all synchronization

problems. In particular, the static number of exchange channels and the inability

to evaluate the exchange channel before use are liabilities for the description of

dynamically growing systems. However, these de�ciencies are easily remedied.

Overall, Exchange Functions allows many interesting communication architec-

tures to be built from only a few simple primitives.

PROBLEMS

7-1 Program a general (n-ary) semaphore in Exchange Functions. Base your program on the

binary semaphore program.

7-2 Rewrite the bu�er program to be a bounded bu�er.

7-3 Rewrite the problem of the constant-temperature liquid bath so that it is more realistic.

y 7-4 A non-empty channel can be in one of two states: either there is a single waiting X or

there are one or more waiting XMs. Use this information to design a bounded-time program

and data structure to perform the channel operations.

7-5 Exchange Functions hypothesizes three classes of exchange functions with communication

capabilities represented by Table 7-1. Invent new classes of exchange functions, describing their

possible communication patterns. Present a rationale for your system.

7-6 What is the e�ect of allowing amb to range over any expression?
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